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Vicinal diamines are very important functional moieties contained
in various biologically active compounds and are also effective
chiral control elements in asymmetric synthesis.1 Metal-mediated
and catalyzed diamination of olefins provides an effective approach
to the synthesis of vicinal diamines, and various diamination
systems have been developed.1-6 Chiral auxiliary-based7 and chiral
Lewis acid-catalyzed8 asymmetric diamination ofR,â-unsaturated
esters and related oxazolidinones using bisimidoosmium as reagent
have also been reported. Generally speaking, asymmetric diami-
nation of olefins with a catalytic amount of metal has yet to be
developed. Recently, we reported a Pd(0)-catalyzed regio- and
stereoselective diamination of conjugated dienes and trienes using
di-tert-butyldiaziridinone (2)9 as nitrogen source (Scheme 1).10,11

Herein we wish to report a catalytic asymmetric process for this
diamination.

Asymmetric diamination was initially examined using 1,3-
hexadiene as substrate with catalysts generated from Pd2(dba)3 and
various commercially available or easily prepared chiral ligands in
C6D6 for 1.5 h (Scheme 2). Some of the results are summarized in
Chart 1. Phosphine and phosphite ligandsL1-L3 gave 4-26%
ee.12 Studies with BINOL-based chiral phosphorus amidite ligands
L4-L613 showed that the steric bulkiness of the nitrogen substituent
has a large impact on both reactivity and enantioselectivity for the
diamination. In search for more effective ligands, it was found that
quantitative conversion and 92% ee were obtained with tetrameth-
ylpiperidine-derived ligandL7.14 Promising results were also
obtained with commercially available ligandsL8 andL9,15 which
provide additional opportunities for further improvement.

Encouraged by the results obtained with ligandL7, asymmetric
diaminations of various conjugated dienes were subsequently
investigated. As shown in Table 1, a variety of conjugated dienes
can be diaminated in good yields and high enantioselectivities (87-
95% ee). Like racemic diaminations with Pd(PPh3)4,10,11the reaction
occurred highly regioselectively at the internal double bond and
highly diastereoselectively, as well. When a mixture ofE and Z
dienes were used (Table 1, entries 2, 4-6, and 12), onlyE isomers
were diaminated. When a conjugated triene was used, the diami-
nation occurred cleanly at the middle double bond in high
enantioselectivity (Table 1, entry 14).16,17

The resulting cyclic ureas18 provide access to various optically
active diamine compounds. For example, free diamine8 can be
obtained in high yield and ee from6 by deprotection with CF3-
CO2H19 and HCl20 (Scheme 3).11 Olefins present in diamination
products also provide good opportunities for further elaboration.
For example, compound6 can be readily converted into optically
active 2,3-diamino acid1120 by oxidation of the olefin21 and
deprotection (Scheme 3).22 The selective monodeprotection of9
was also achieved cleanly to give12 with CF3CO2H at rt,10

providing opportunities to introduce different groups on the
nitrogens if desired.23

In summary, a catalytic asymmetric diamination for a variety of
conjugated dienes and triene has been effectively achieved using

di-tert-butyldiaziridinone as nitrogen source with a catalyst gener-
ated from Pd2(dba)3 and tetramethylpiperidine-derived phosphorus
amidite ligandL7, giving diamination products in good yields with

Chart 1. Asymmetric Diamination of Diene 4 with Selected
Ligands

Scheme 1

Scheme 2

Scheme 3
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high regio-, diastereo-, and enantioselectivities. The resulting
diamination products are potentially valuable intermediates for the
synthesis of various optically active compounds such as diamine,
2,3-diamino acid. Further development of a more effective asym-
metric catalytic process using different nitrogen sources, metal

catalysts, and chiral ligands as well as expansion of the substrate
scope and synthetic application is currently underway.
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Table 1. Catalytic Asymmetric Diamination of Dienes and Trienea

a All reactions were carried out with diene or triene (0.40 mmol),
diaziridinone2 (0.50 mmol), Pd2(dba)3 (0.02 mmol), andL7 (0.088 mmol)
in benzene-d6 (0.2 mL) in an NMR tube at 65°C under argon for 1.5 h
unless otherwise stated.b A mixture ofE andZ isomers was used. For entry
2, diene (0.88 mmol,E/Z ) 1/1.2, E isomer: 0.40 mmol); for entry 4,
diene (1.0 mmol,E/Z ) 1/1.5,E isomer: 0.40 mmol); for entry 5, diene
(0.73 mmol,E/Z ) 1.2/1,E isomer: 0.40 mmol); for entry 6, diene (0.64
mmol,E/Z ) 1.67/1,E isomer: 0.40 mmol); for entry 12, diene (0.64 mmol,
E/Z ) 1.67/1,E isomer: 0.40 mmol).c The reaction time was 2 h.d For
entry 4, the absolute configuration (R,R) was determined by comparing the
optical rotation with the reported one after removal oft-butyl groups (ref
21). For the rest, the absolute configurations are not determined, and the
stereochemistry indicated represents the relative stereochemistry.e Isolated
yield based on diene or triene.f The ee was determined by chiral GC
(Chiraldex B-DM column) after removal oft-butyl group.g The ee was
determined by chiral GC (Chiraldex B-DM column).h The ee was
determined by chiral HPLC (Chiralpak AD-H column).i The ee was
determined by chiral HPLC (Chiralpak AD column) after removal oft-butyl
groups.
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